Kristallchemische Untersuchungen in den Systemen Mn-As, V-Sb, Ti-Sb.

Von

H. Nowotny, R. Funk und J. Pesl.

Aus dem I. Chemischen Laboratorium der Universität Wien.

Mit 2 Abbildungen.

(Eingelangt am 16. Febr. 1951. Vorgelegt in der Sitzung am 22. Febr. 1951.)

Das System Mn-As.

In einer mit Teil I bezeichneten Arbeit wurden röntgenographische Studien in diesem Paar von H. Nowotny und F. Halla¹ veröffentlicht. Vorliegende Untersuchungen stellen eine Ergänzung (Teil II) dar. In Porzellantiegeln, die von einem allseitig zugeschweißten Eisentiegel aufgenommen waren, erschmolzen wir Mn-As-Legierungen folgender Zusammensetzung: 42,0; 51,0; 59,5; 66,5; 72,5; 75,0; 80,0; 88,5; 91,5 Gew.-% Mn. Die Proben wurden anschließend 72 Stdn. bei 700°C geglüht und abgeschreckt. Eine größere Zahl von Proben legierten wir unter Schutzsalz im offenen Tiegel, darunter solche mit 64,8; 74,6; 81,5; 83,5 und 85,5 Gew.-% Mn. Die Röntgenogramme (Cr-K-Strahlung) bestätigen das Auftreten von Mn₂As (C 38-Typ) und von MnAs (B 8-Typ). In Übereinstimmung mit unserem früheren Ergebnis läßt sich letztgenannte Phase einwandfrei mit einer hexagonalen Zelle: $a = 3,71_6$ und $c = 5,70_4$ k X. E indizieren und nicht mit den von K. Fylking² angegebenen Gitterkonstanten für den verwandten B 31-Typ. Ungeklärt bleibt noch der Bereich zwischen MnAs und Mn₂As, in welchem linienreiche Diagramme auftreten, die allerdings mit jenen des B 8- bzw. B 31-Gitters nahe verwandt sind. Die Röntgenogramme der Legierungen zwischen 59,5 und 72,5% Mn enthalten neben den Interferenzen von Mn₂As noch Linien einer neuen Kristallart, deren vermutliche Zusammensetzung seinerzeit

¹ Z. physik. Chem., Abt. B 36, 322 (1937).

² Ark. Kem., Mineral. Geol., Ser. B 11, Nr. 48 (1934).

mit Mn_3As angegeben wurde. Nach der Manganseite zu liegt dann ein heterogenes Gebiet dieser Phase mit Mangan-Mk. vor. Im getemperten Zustand tritt dieser Mischkristall sowohl in der α -Mn- wie in der γ -Mn-Struktur auf, während nach Abschrecken aus der Schmelze bei einer Probe mit 91,5% Mn auch die β -Modifikation erscheint. Eine genaue Bestimmung der Umwandlungslinien haben wir wegen der Art der Herstellung der Proben nicht angestrebt, da infolge Sublimation und nachfolgender Kondensation des Arsens leicht Konzentrationsverschiebungen eintreten können.

Die Phase Mn_3As . In den verschiedenen Legierungen wurde nach Einkristallen gesucht und es konnte eine brauchbare Partikel von blättchenförmigem Habitus in einer Legierung mit 72,5% Mn gefunden werden. Um ein gutes Wachstum der Kristalle zu erzielen, ließen wir die Schmelzen von 1100 bis 700°C ganz langsam und erschütterungsfrei abkühlen. Die metallisch glänzenden Einkristalle wurden um [001] (senkrecht zur Blättchenebene) und um [430] gedreht. Sämtliche Aufnahmen lassen sich mit Hilfe einer tetragonalen, quadratischen Form, entsprechend den Gitterkonstanten:

$$a = 3,780 \ k \ X \cdot E.,$$

 $c = 16,2_6 \ \text{und} \ c/a = 4,29_8$

Eine Laue-Aufnahme senkrecht zur (001)-Ebene zeigte indizieren. Holoedrie, jedoch eine ganz geringfügige Abweichung von der vierzahligen Symmetrie, so daß hier eine pseudotetragonale, orthorhombische Zelle vorliegt. Als Zahl der Formelgewichte (Mn₃As) ergibt sich Z = 4. Die Auslöschungen sind: (hk0) nur mit h + k = 2 n und (001) mit l = 2 n, doch sind die ungeraden (001) in dem hier charakteristischen Raumsystem D_{2h}^{13} nur zufällig ausgelöscht. Als Leitprinzip für die Strukturbestimmung diente diese Tatsache sowie die große Ähnlichkeit zwischen den Diagrammen von Mn₃As und Mn₂As — beide praktisch tetragonal mit fast gleicher a-Achse. Übernimmt man daher die Anordnung von Mn₂As und wiederholt sie in der c-Achse, indem die zweite Gruppe um 1/2 00 verschoben wird, so stimmt nicht nur Packungsdichte mit 12 Mnund 4 As-Atomen überein, sondern man erhält so die zufälligen ungeraden (001)-Auslöschungen. Die Punktlagen 2a) und 2b) der Raumgruppe D_{2h}^{13} sind besetzt mit: Mn I: $z = 0,193_5$, Mn II: $z = -0,193_5$, Mn III: $z = -0.434_5$, As I: z = 0.409, alle in 2a) und Mn IV: $z = 0.306_5$, Mn V: $z = -0.306_5$, Mn VI: $z = -0.065_5$, As II: z = 0.091, alle in 2b). Insgesamt 10 Mn- und 2 As-Atome könnte man demnach auch in den Punktlagen 4f) und 2c) der tetragonalen Raumgruppe D_{4h}^{7} (Mn₂As) unterbringen, so daß die nahe Verwandtschaft zur höheren Symmetrie auch hier offenbar wird. Das rhombische Raumsystem ist eine Untergruppe von D_{4h}^{7} . Zu den Parametern gelangten wir einerseits auf Kristallchem. Untersuchungen in den Systemen Mn-As, V-Sb, Ti-Sb. 515

Grund der Atomanordnung in Mn_2As , andrerseits aus einer Patterson-Analyse entlang der c-Achse, wobei wir zu diesem Zwecke eine genaue Intensitätsbestimmung der (001)-Reflexe vornahmen. Wie Abb. 1 erkennen läßt, liegen die Schwerpunktsabstände der Belegung bei 1/9 und 1/5.

Mit den oben angegebenen Parametern kommen wir zu einer sehr guten Übereinstimmung zwischen beobachteten und berechneten Intensitäten (Tabelle 1 und 2). Zu berücksichtigen ist dabei, daß der ausgeprägt blättchenförmige Habitus

eine merkliche Überhöhung der geraden (001)-Reflexe bewirkt. Verschiedene andere Anordnungen, die

Abb. 1. Ergebnis der *Patterson*-Analyse in Richtung der *c*-Achse.

Abb. 2. Elementarzelle von Mn₃As; die Atome auf den beiden rückwärtigen Flächen sind nicht eingezeichnet.

gerechnet wurden, führten durchwegs zu Widersprüchen, insbesondere zeigte es sich, daß eine Parameteränderung zugunsten eines größeren Mn—As- und kleineren Mn—Mn-Abstandes nicht möglich ist. Obiger Strukturvorschlag kann daher als weitgehend gesichert angesehen werden.

Die kürzesten interatomaren Abstände sind:

$$Mn-Mn = 2,64 \text{ Å},$$

 $Mn-As = 2,52 \text{ Å},$

während man als Mittelwerte: 2,71 und 2,60 Å findet. Bemerkenswert ist auch in diesem Fall die Feststellung, daß bei den metallreichen Phasen, die sich zwischen Übergangsmetallen und mittelgroßen Metalloiden

Äquator		1. Schichtlinie		2. Schichtlinie				
Index	Int. ber.	Int. gesch.	Index	Int. ber.	Int. gesch.	Index	Int. ber.	Int. gesch.
(110) (200) } (020) } (220) (310) } (130) }	0,0 41,0 32,0 0,0	mst st	(101) { (011) } (111) (201) } (211) { (121) } (221) (301) } (311) } (131) }	0,5 6,1 0,0 0,2 0,0 0,2 14,8	ss mst ss ss st	(102) (012) (112) (202) (022) (212) (122) (222) (302) (322) (312) (132) (132)	0,8 0,0 0,0 0,5 0,0 0,35 0,0	ss
3. 5	Schichtlinie		. 4.1	Schichtlinie)	5. 5	Schichtlinie)
(103) (013) (113) (203) (023) (213) (123) (123) (223) (223) (303) (033) (033) (0,5 13,9 0,0 0,3 0,0 0,35	ss st s	$ \begin{array}{c} (104) \\ (014) \\ (114) \\ (204) \\ (024) \\ (214) \\ (124) \\ (124) \\ (224) \\ (304) \\ (034) \end{array} $	0,0 0,0 0,9 0,0 1,2 0,0	 SS S	$ \begin{array}{c} (105) \\ (015) \\ (115) \\ (205) \\ (025) \\ (215) \\ (125) \\ (225) \end{array} $	0,5 41,9 0,0 0,4 0,0	ss sst

Tabelle 1. Intensitätsberechnung einer DK-Aufnahme von Mn_3As um [001] gedreht; Cr—K-Strablung.

bilden, ein für Einlagerungsstrukturen gültiges Bauprinzip zu bestehen scheint. Derartige Überlegungen wurden bereits früher von *H. Nowotny* und *O. Årstad*³ gemacht. Für gleiche Koordinationszahl müßte der Radius von Arsen größer als jener von Mangan sein⁴, wie es auch der Gitteraufweitung bei β - und γ -Mangan entspricht (bis 6,36 bzw. 3,78 und 3,56 Å). Als eine Art Trägergitter zeichnet sich hier unmittelbar die Zelle von γ -Mangan ab, wobei die *a*-Achse von Mn₃As und γ -Mangan-Mk. vollkommen gleich ist, während — wie aus Abb. 2 ersichtlich — der Abstand in der *c*-Richtung von 3,53 auf 3,70 Å anwächst. Damit kann man auch sofort die Spaltbarkeit parallel zu (001) verstehen. Die Betrachtung ist ganz ähnlich jener beim C 38-Typ, wo wir von der um 45°

³ Z. physik. Chem., Abt. B 38, 461 (1938).

⁴ Vgl. F. Laves in J. D'Ans, E. Lax, Taschenbuch für Chemiker und Physiker. Berlin: Springer-Verlag. 1943.

Index	$10^3 \sin^2 \Theta$ ber.	$10^3 \sin^2 \Theta$ gef.	Int. ber.	Int. gesch.
(001)	4,95	nicht beob.	0,0	
(002)	20	nicht beob.	16,2	
(003)	44,5		0,0	
(004)	79	77	14,6	ss
(101))	07		6,6	
(011) J	97		0,0 ∫	
(102)	112	110	0,0 }	
(012) J (005)	109 5	110	10,8 J	1555
(000)	123,5		0,0	
(103) (013) (136		5,8	
(104)				
(014)	171			
(006)	178	177	14.2	s
(110)	183		0,0	
(111)	188	193	55,7	88
(112)	203	—	0,0	—
(105)	915		3,8)	ag K
(015) J	210		0,0 ∫	55 IX
(113)	227,5	226	113,2	m
(007)	242,5	_	0,0	
(114)	262	— —	0,0	
(106) (016)	270	263		s
(115)	306.5	306	268.5	sst
(008)	316	315	45.4	m
(107)	0.0.4	000	13,9)	
(017) J	334	332	0,0 }	SSS
(116)	361	—	0,0	
(200)	366	364	143,1	st K
(201)	371		0,0	
(021))			0,0 1	
(202)	386		0,4	
(022))	401		0,4)	
(108)	101		0,0	
(018)	408	410	9.0	SSS
(203)	(11		0,0 1	
(023) 🐧	411	—	0,0 }	—
(117)	425,5		4,8	
(204)	445		2,2	
(024)			2,2 5	
(211)	463		0,0	
(141)			1.3	

Tabelle 2. Auswertung einer Pulveraufnahme von Mn_3As und Intensitätsberechnung; Cr-K-Strahlung⁵.

 5 Auf der Aufnahme waren noch einige Linien der benachbarten Phase $\rm Mn_2As$; die Koinzidenzen mit Reflexen dieser Verbindung sind mit K bezeichnet.

H. Nowotny, R. Funk und J. Pesl:

Index	$10^3 \sin^2 \Theta$ ber.	$10^3 \sin^2 \Theta$ gef.	Int. ber.	Int. gesch.
	a 	[\	
(212)	478		2,7	
(122) J			0,0 J	
(205)	489		0,0	·
(025)]			0,0 J	
(109)	493	496	0,4	ma
(019) J	495		13.5	1115
(118)	499		0.0	
(213)			0.0)	
(123)	502		1,8	
(214)			0,0)	
(124) j	037		0,0 ∫	
(206)	544	541	5,4)	99
(026) J	011	941	5,4 ∫	66
(215)	581		$\left[\begin{array}{c}0,0\\1\\0\end{array}\right]$	
(125) J	F 04		1,8 J	
(119)	084	_	0,3	
(1010)	587	—		
(0110)	604		0.0	
(207)	001		0.0)	
(027)	608	、	0,0 }	
(216)	090	696	8,2	~~~~
(126)	030	030	0,0 Ĵ	888
(1110)	678		0,0	
(208)	682	685	42,5	\mathbf{mst}
(028) J	001	000	42,5	
(1011)	696		3,8	
(0111) (695		s
(217) (127)	700		13.6	
(0012)	713		0.7	
(220)	732	733	85,0	st K
(221)	737		0,0	
(222)	757		0,5	—
(209)	767		0,0 \	
(029) ∫	707		0,0 J	ř.
(218)	774	778	14,1	88
(128) J			0,0 J	
(223)	777		0,0	
(1111) (1012)	181		0,4	
(1012) (0112)	805	809	14.1	SS
(224)	811		4,2	
(301)	090		0,7	
(031)	830		0,0 ∫	
(0013)	837	—	0,0	—
(302)	845	850		SS
(032) J	955		16,4 J	
(440)	699		0,0	

Index	$10^3 \sin^2 \Theta$ ber.	10 ³ sin ² Ø gef.	Int. ber.	Int. gesch.
(219) (129) (2010)	859	863	$\left. \begin{array}{c} 0,0\\ 7,3\\ 69,0 \end{array} \right\}$	st K
(0210) (303) (033) }	869		$\left. \begin{array}{c} 1,2\\ 0,0 \end{array} \right\}$	
(1112)	896		0,0	
$\left.\begin{array}{c} (304)\\ (034)\end{array}\right\}$	904		0,0 0,0	
(226)	910	912	16,8	SSS
$(310) \\ (130) $	917	—	$\left. \begin{array}{c} 0,0\\ 0,0 \end{array} \right\}$	
(311) (131)	922	922	$\left. \begin{array}{c} 31,5 \\ 31,5 \end{array} \right\}$	s
(1013) (0113) (929	933	$\left. \begin{array}{c} 36,5\\0,0 \end{array} \right\}$	SS
(312) (132)	938		0,0	
$\begin{array}{c} (305) \\ (035) \end{array}$	948		$\left. \begin{array}{c} 2,0\\ 0,0 \end{array} \right\}$	
(2110) (1210)	953		0,0) 0,0 }	
(313) (133)	961	960	85,0) 85,0 }	\mathbf{st}
(2011) (0211)	970		0,0 0,0	
(0014)	970		0,0	
(227)	979		0,0	·
$\left. \begin{array}{c} (314) \\ (134) \end{array} \right\}$	996		0,0 0,0 }	—

Kristallchem. Untersuchungen in den Systemen Mn-As, V-Sb, Ti-Sb. 519

gedrehten Trägerzelle ausgegangen sind. In beiden Fällen besteht eine leichte Spaltbarkeit in (001).

Die analogen Systeme: V-As und Ti-As weisen ebenfalls mehrere intermetallische Phasen auf; die Analyse der linienreichen Röntgenogramme steht aber noch aus.

Das System V-Sb.

Die Herstellung dieser Legierungen mit Gehalten von 17,3; 29,5; 38,6; 45,5; 55,7 Gew.% Verfolge in abgeschlossenen Pythagorasröhrchen. Wegen der zum Teil erheblichen Reaktionsträgheit mußten aber solche Legierungen mehrfach wiederholt und allmählich über Vorlegierungen erschmolzen werden. Es erwies sich als notwendig, die Proben über 1 Std. bei Temperaturen zwischen 1500 und 1600°C zu halten. Eine Temperatur bei 600°C verändert den Zustand der Legierungen nicht. Eindeutig erfaßbar war bisher nur die Sb-reichere Seite, wo wir erstens

Index	$10^3 \sin^2 \Theta$ gef.	$10^3 \sin^2 \Theta$ ber.	Int. gesch.	Int. ber.
(002)	75 1	75.19	a	8.5
(002)	99.4	99.12	eat	50.5
(211)	109.9	109.88	500	90,9
(112)	102,8	111.04	aa	2.0
(220)	111,4	120.64	88888 crt	2,0 0.5 K
(202)	130,8	130,04	50	9,5 K
(310)	199,9	100,0		11,5 A
(222)	201.0	180,10		0,0
(321)	201,9	199,22	885	0,02
(312)	213,2	213,92	ss	2,04 A
(400)	223,3	222,08	SS	1,10
(213)	238,7	238,42	mst	10,5 K
(330)	248,5	249,84	SS	3,02
(411)	254,5	254,74	m	6,1 K
(420)	277,7	277,6	SSS	1,46
(402)	297.4	$\left\{\begin{array}{c}297,2\\297,2\end{array}\right\}$	mst	$\{4,52\ K$
(004) J		[300,48 J		2,13
(332)	324,9	324,96	m	7,05 K.
(114)		328,24		0,05
(323)	347,2	349,46	588	0,2 K
(422)	355.5		SSS	0,05
(204) J	000,0	(356,0 J		(0,2
(510)		360,88		0,014
(431)		365,78		0,11
(413)	404,6	404,98	s	2,8
(224)	411,5	411,52	SSS	0,5
(521)	421,8	421,3	st.	5,32 K
(512)	439 1	$\{ 436,0 \}$	m	$\int 0.7 K$
(314) J	100,1	[439,28 J		1 3,5
(440)	446,0	444,16	SSS	0,7
(530)	472,1	471,92	88	0,6 K
(600)	500,0	499,68	ss	1,8 K
(433)		516,02		0,0
(442)	522.7	{ 519,28 }	88	
(404) J	022,1	[522,56]		0,6
(611)	538.4		$\mathbf{s} d$	
(215) J	000,1	[538,9]		(3,0
(532)		547,04		0,0
(334)	550,5	550,32	s	1,7 K
(620)	-	555,2		0,1
(523)	571.3	$\left\{\begin{array}{c}571,74\\571,74\end{array}\right\}$	st	1 4,0 K
(602) J	~~~~	[[574,8]		(1,4
(424)	578,2	578,08	88	1,0
(541)	588,5	587,86	ms	2,3 K
(622)	630,1	630,32	ss	1,0 A
(631)		643,38		0,0
(325)	648,7	649,54	ss	0,1 K
(514)		001,30		0,0

Tabelle 3. Pulveraufnahme von VSb_2 mit Intensitätsberechnung; Cu—K $_{\alpha}$ -Strahlung.

Index	$10^3 \sin^2 \Theta$ gef.	$10^3 \sin^3 \Theta$ ber.	Int. gesch.	Int. ber.
(006) (613) } (710) (550)	679,2 	$\left\{\begin{array}{c} 676,08\\ 682,58\\ 694,0\\ 694,0\end{array}\right\}$	ss d 	$ \left\{\begin{array}{c} 0,4\\ 0,4\\ 0,1\\ 0,0 \end{array}\right. $
$ \begin{array}{c} (116)\\ (415)\\ (640)\\ (206) \end{array} $	703,4 720,8 731,6	$\left\{\begin{array}{c} 703,84\\ 705,46\\ 721,76\\ 731,6\\ \end{array}\right\}$	SS SSS SS	$ \left\{\begin{array}{c} 0,6\\ 1,9\\ 0,5\\ 0,9\ K \end{array}\right. $
(543) (444) (721) (712) (552)	737,8 745,5 754,5 769,4	$\left\{\begin{array}{c}738,1\\744,64\\754,42\\\left\{\begin{array}{c}769,12\\760,12\end{array}\right\}\right.$	s—ss sss ss ms	$ \begin{array}{c} 2,6 \\ 1,1 \\ 1,7 \\ \begin{cases} 2,1 \\ 0,2 \end{array} $
(532)) (534) (226) (633) (642))	772,3	(769,12) 772,4 787,12 793,62 (796,88)	888 	(0,2) 1,0 0,0 0,0 (3,8)
$\begin{array}{c} (604) \\ (604) \\ (730) \\ (316) \\ (435) \end{array}$	795,3805,1 814,0	$ \left\{\begin{array}{c} 800,16\\ 805,04\\ 814,88\\ 816,5 \end{array}\right\} $	mst d sss	$ \begin{cases} 3,6 \\ 2,6 \\ 0,7 \\ 0,08 \end{cases} $
(624) (651) (525) (732) (800)		855,68 865,46 872,02 880,16 888,28	sss ms ss	0,25 0,7 5,5 2,5 0,0 K
(300) (406) (723) (811)	890,8 898,3 904,5 920,3	$\left\{\begin{array}{c} 888,28\\ 898,16\\ 904,66\\ \left\{\begin{array}{c} 920,98\\ 920,98\\ 920,98\end{array}\right\}$	s u ss ss mst d	0,0 K 2,9 2,6 $\{ 6,1 K$
(336) (820) (426) (802)	924,9 962,9	$\begin{array}{c} 925,83\\ 925,82\\ 943,84\\ 953,86\\ 963,4\end{array}$	ms 	0,25 0,1 0,5
$(615)\alpha_1$ (615) α_2	983,0	${983,06 \\ 989,62}$	mst d	${ 1,4 \ K \ 11,4 \ K \ N \ N \ N \ N \ N \ N \ N \ N \ N$

Kristallchem. Untersuchungen in den Systemen Mn-As, V-Sb, Ti-Sb. 521

keine röntgenographisch merkbare Löslichkeit von Vanadin in Antimon beobachteten und die erwartete Phase VSb₂ mit C16-Typ in Analogie mit dem Befund bei Ti—Sb⁶ fanden. Die Natur der anderen noch vorhandenen Kristallarten ist einer späteren Untersuchung vorbehalten.

Die Phase VSb_2 . Die Auswertung einer Pulveraufnahme von VSb_2 — die Legierung enthielt daneben noch etwas einer anderen Phase — geht aus der Tabelle 3 hervor. Die Gitterkonstanten sind:

$$a = 6,54_2 \ k \ X \cdot E.,$$

 $c = 5,62_4 \ k \ X \cdot E.$ und $c/a = 0.859_7.$

⁶ H. Nowotny und J. Pesl, Mh. Chem. 82, 336, 344 (1951).

Die errechnete Röntgendichte ist mit 8,13 g/ccm erstaunlich hoch und gibt wieder einen Hinweis auf einen Aufbau gemäß einer dichten Auffüllung von Lückenplätzen. Mit einem Idealparameter x = 0,158 ist die Übereinstimmung zwischen den beobachteten und berechneten Intensitäten eine vollständige. Danach muß bei VSb₂ für die Sb-Atome eine Paarbildung angenommen werden, weil die Abstände zu den anderen Sb-Atomen (die dann die Ausbildung der hexagonalen Waben, wie z. B. bei MnSn₂, ergeben würden) merklich größer sind. Als kürzeste interatomare Abstände errechnet man:

$$V-V = 2,81 \text{ Å},$$

$$V-Sb = 2,83 \text{ Å},$$

$$Sb-Sb = 2,92 \text{ Å},$$

$$(Sb-Sb = 3,29 \text{ Å}).$$

Der C 16-Typ tritt am häufigsten bei Kombinationen zwischen einem Übergangsmetall A und einem Metall zweiter Art B gemäß einer Formel AB_2 auf. Bekannt sind Digermanide, Distannide und Diplumbide⁷. Mit den neuen Vertretern TiSb₂ und VSb₂ wird der Existenzbereich des C 16-Typs noch weiter ausgedehnt. Man sieht unmittelbar, daß das größere B_2 -Molekül auch einen größeren A-Partner benötigt. Das treffen wir auch an, wenn wir etwa an die Diplumbide von Pd oder Au denken⁸. Zusammen mit dem Dialuminid wie CuAl₂ vermögen daher B-Metalle bzw. Halbmetalle der 3., 4. und 5. Nebenreihe diese Struktur zu stabilisieren. Interessant ist hier noch der Vergleich von C 16- mit C 2-Vertretern — auf den engen Zusammenhang zwischen diesen beiden Strukturen wurde bereits mehrfach aufmerksam gemacht —, da die B-Partner in Phasen mit C 2-Struktur vorzugsweise aus der 5. und 6. Nebenreihe stammen.

In den titanreichen Legierungen konnten wir bei 61,0 Gew.-% Ti eine fast homogene Kristallart ermitteln, deren Struktur isotyp mit dem DO_{19} -Gitter ist. Da die Zusammensetzung mit etwa Ti₄Sb von der für diesen Typ charakteristischen abweicht, haben wir einen ganz ähnlichen Aufbau wie bei Ti₄Pb⁵ anzunehmen. Damit ergibt sich für den Idealparameter eine vollkommene Übereinstimmung in den Intensitäten einer Pulveraufnahme (Tabelle 4). Die hexagonal dichte Packung zeigt eine Überstruktur nach 2a' mit den Gitterkonstanten:

$$a = 2 a' = 5,946 k X \cdot E.,$$

 $c = 4,798 k X \cdot E.$ und $c/a' = 1,614.$

⁷ Vgl. *H. Nowotny* in *W. Klemm*, FIAT-Berichte: Anorganische Chemie, Bd. 26.

⁸ H. I. Wallbaum, Z. Metallkunde 35, 218 (1943).

	1			1
Index	$10^3 \sin^2 \Theta$ gef.	$10^3 \sin^2 \Theta$ ber.	Int. gesch.	Int. ber.
β (1011)	35,1		SSSS	· .
(1011)	48,7	48,2	\mathbf{ms}	63,2
β (1120)	54,5		SSSS	· · · · · · · · · · · · · · · · · · ·
$(11\overline{2}0)$	67,9	67,2	ss	26,9
β (2020)	73,2		ss	
$(20\overline{2}0)$	89,4	89,6	\mathbf{ms}	74,2
β (20 $\overline{2}1$)	93,9		\mathbf{ms}	
(0002)	103,9	103,2	\mathbf{ms}	87,4
$(20\overline{2}1)$	115,3	115,4	\mathbf{sst}	335,0
$(10\overline{1}2)$	121,5	125,6	SSS	5,9
β (2131)	144,0	—	SSSS	
(2130)	156,5	156,8	SSS	4,43 K
(1122)	170,7	170,4	ss	14,4
(2131)	177,3—182,6	182,6	${ m ms}~d$	20,0 K
(2022)	192,8	192,8	\mathbf{m}	47,7
(3030)	201,9	201,6	SSS	5,6
β (2240)	219,7		ss	
(3031)	227,7	227,4	SSSS	0 K
(1013)	254,5	254,6	SSS	6,15
(2132)	260,7	260,6	SSSS	3,7
(2240)	269,1	268,8	\mathbf{mst}	53,5~K
(3140)		291,2		1,495
(3032)	304,6	304,8	SSS	5,5
(3141)	314,3	317,0	SS	$7,93 \ K$
(2023)	321,6	321,8	\mathbf{mst}	58,1
(4040)	358,0	358,4	SSS	8,0
(2242)	372,3	372,0	\mathbf{mst}	59,5
(4041)	384,1	384,2	· ms	42,8
(2133)	389,2	389,0	885	5,46
(3142)	—	394,4		1,82
(0004)	412,3	412,8	SSS	8,39
(3250)	_	425,6		0,83
(3033)	433,9	$\left\{ 433,8 ight\}$	SSS	$\int 0 K$
(1014)		[435,2]		0,802
(3251)	446,8	451,4	SSS	4,54
(4042)	461,6	461,6	SS	10,6
(4150)		470,4		2,88
(1124)		480,0		2,8
(4151)		496,2		0

Tabelle 4. Auswertung einer Pulveraufnahme von Ti₄Sb mit Intensitätsberechnung; Cu-K-Strahlung.

H. Nowotny, R. Funk und J. Pesl:

Index	$10^3 \sin^2 \Theta$ gef.	$10^3 \sin^2 \Theta$ ber.	Int. gesch.	Int. ber.
(2024)	503,5	502,4	88	9,6
(31 4 3))	596 9	∫ 523,4]	aaa d	∫ 3,96
(3252) ∫	520,2	₹ 528,8 €	888 U	1,32
β (42 $\overline{6}1$)	538, 4		SSSS	_
$(50\overline{5}0)$		560,0		0,322
(2134)	569 B	∫ 569,6]	888	∫ 1,27
(4152) ∫	000,0	573,6∫	335	5,05
(5051)		585,8		1,9
(4043)	590,3	590,6	ms	25,6
(3360)	—	604,8		1,24
(3034)		614,4		2,4
(4260)	627,7	627,2	SS	8,55
(4261)	652.8	∫ 653,0 }	mst d	∫ 50,6
(3253) ∫	00,0			3,76
(5052)		663,2		0,626
(1015)		667,4		1,88
(2244)	681,6	681,6	\mathbf{m}	34,0
(5160)		694,4		0,636
(4153)	703.4	{ 702,6 }	ss d	10
(3144) J		[[704,0]]		[1,3 K
(3362)		708,0		2,56
(5161)	720,8	720,2	SSSS	3,9
(4262)	730,1	730,4	s	17,7
(2025)	734,7	734,6	\mathbf{ms}	26,9
(4044)	772,3	771,2	SS	9,23
(5053)		792,2		2,18
(5162)		797,6		1,47
(2135)	802,3	801,8	888	4,48
(6060)	806,5	806,4	s	19,9
(4370)		828,8		0,786
(6061)		832,2		
(3254)		838,4		1,68
(3035)		846,6		0
(4371)	858, 5 - 862, 1	804,0	${\rm st} d$	5,07
(4203) J (5970)	072 0	ี (899,4 J 979.6	0000	109,4
$(\frac{3270}{4154})$	010,0 225 9	010,0	8888	0,00 7 85
(4104) (5971)	009,9	000,2 800 A	88	1,00
$(60\overline{62})$	908.6	000,4 000 6	 m	56.9
(5162)	000,0	(9266)	111	(7.92)
(0006)	926,8	928.8	$\mathbf{s} \mathbf{d}$	10.5
		ι <u>ε</u> ~ − ∪, ∪ j i		1 1

Kristallchem. Untersuchungen in den Systemen Mn-As, V-Sb, Ti-Sb. 525

Die Atome verteilen sich entsprechend $Ti_3(Ti_{0.2}Sb_{0.8})$ über die Plätze. Die berechnete Röntgendichte ist 5,66 g/cem. Die interatomaren Abstände findet man mit 2,95 bzw. 2,97 Å um etwa 1% größer als im reinen Titangitter.

Zusammenfassung.

Im System Mn—As wurde die Struktur der Phase Mn₃As bestimmt. Sie kristallisiert in einem eigenen Typ, der eng in Beziehung zum Gitter von Mn₂As steht. Die Elementarzelle von Mn₃As ist pseudotetragonal orthorhombisch mit den Achsen: a = b = 3,780 und $c = 16,2_6 k X \cdot E$. Im charakteristischen Raumsystem D_{2h}^{13} werden die Parameter ermittelt. Auf die strukturellen Zusammenhänge zwischen der Zelle von γ -Mn, Mn₃As und Mn₂As wird hingewiesen; die Bauprinzipien bei solchen Gittern werden erörtert.

Im System V—Sb wurde die zu TiSb₂ isotype Verbindung VSb₂ mit C 16-Struktur gefunden. Überraschend ist die hohe Dichte dieser Kristallarten. Die Achsen der Elementarzelle sind: $a = 6,54_2$ und $c = 5,62_4$ $k \ X \cdot E$. Der Bereich der C 16-Strukturen erfährt damit bezüglich des *B*-Partners eine Erweiterung. Die sich daraus ergebenden Folgerungen werden besprochen.

Im System Ti-Sb wird das Bestehen der Phase Ti₄Sb nachgewiesen, die gemäß einer Formulierung Ti₃(Ti_{0,2}Sb_{0.8}) im DO₁₉-Typ kristallisiert.